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Telomerase expression is restricted in human cells and

so telomeres shorten throughout our lives, providing a

tumour suppressor mechanism that limits cell proliferation.

As a trade-off, continuous telomere erosion results in

replicative senescence and contributes to ageing.

Recently, telomerase therapies were proposed as a

valid approach to rescue degenerative phenotypes

caused by telomere dysfunction. However, systemic

effects initiated by short telomeres may prove

dominant in limiting tissue renewal in the whole organism.

Most of our knowledge of telomere biology derives from

mouse models that do not rely on telomere exhaustion for

controlling cell proliferation and tissue homeostasis. In order

to understand the impact of telomere shortening in natural

ageing, we need to investigate animal models that, like

humans, have evolved to have telomere length as a cell

division clock.
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Introduction
Ever since the discovery that human primary cells have a

limited replicative potential as a direct consequence of

telomere shortening, telomere biology has been an

intense area of study. Telomere shortening and re-acti-

vation of telomerase, the reverse transcriptase respon-

sible for telomere synthesis, stepped into the spotlight as

prime candidates to explain the rise of human cancers

with age [1].

Studying the consequences of telomere shortening in the

lab is a serious challenge. Telomerase fails to neatly

provide a single length to all telomeres, so telomeres

are distributed over a population of sizes around a given

average. It is difficult to acquire in vivo information on

length distribution and, even more difficult, the number

of crucially short telomeres. Since it is the number of

crucially short telomeres that determine replicative

senescence [2], simply knowing the average telomere

length is not enough. It is therefore unwise to compare

studies that use different techniques to assess telomere

dynamics and this has significantly confused the field [3].

The traditional culprit of ageing has been the accumu-

lation of mutations over our lives associated with reactive

oxygen species (ROS). However, recent work unified

telomere shortening and consequent p53 activation to

the downregulation of mitochondria biogenesis and ROS

production [4�,5]. Other studies claim that re-introduc-

tion of telomerase may rescue age-related degenerative

phenotypes in mice [6�,7��]. However, our knowledge of

vertebrate telomere biology derives mainly from mouse

models that do not rely on telomere depletion as means

for controlling cell proliferation [8]. We consider it is of

timely importance to clarify the role of telomere short-

ening in animals that, like humans, have evolved telo-

mere length as an internal cell division timer [9].

This review offers a synthesis of what is known about

telomere shortening in the wild and in model organisms,

highlighting crucial discoveries of the past two years. In

addition, we point to alternative vertebrate models for

studying telomere biology. We favour a view where age-

related dysfunctions have evolved as a consequence of

different life strategies adopted in nature. Finally, we

explore a model where telomere dysfunction is perceived

by the organism both in autonomous and non-cell-autonom-

ous ways. Telomere dysfunction may ultimately provide

both ‘seed’ and ‘soil’ for loss of tissue homeostasis, promot-

ing disease and contributing to the phenomena of ageing.

Telomere shortening in nature
Telomeres constitute the ends of linear chromosomes,

comprising DNA (TTAGGG)n and associated proteins,

known as shelterin [10]. The enzyme telomerase is

responsible for elongating telomeres. However, its

expression is restricted in human somatic cells and so

telomeres shorten during our lifespan [11]. Telomere

erosion triggers a DSB-like DNA damage response that

culminates in senescence and/or apoptosis. Depending on

the genetic background, cells can overcome this block

and enter crisis, leading to genome catastrophe and

eventually cell death [12]. If telomerase is re-expressed

at this stage in vitro, cells escape crisis and become

immortalized [13], while in vivo, tumour progression is

significantly increased [14].

In nature, most species either do not restrict telomerase or

die long before telomeres shorten to crucial lengths.

Available online at www.sciencedirect.com

Current Opinion in Cell Biology 2012, 24:804–808 www.sciencedirect.com

mailto:mgferreira@igc.gulbenkian.pt
http://www.sciencedirect.com/science/journal/09550674/24/6
http://dx.doi.org/10.1016/j.ceb.2012.11.003
http://dx.doi.org/10.1016/j.ceb.2012.09.007
http://www.sciencedirect.com/science/journal/09550674


However, different strategies for body sizes and lifespans

were selected throughout evolution. Consequently, some

organisms had telomere maintenance under evolutionary

scrutiny. For example, telomere length inversely corre-

lates with lifespan in mammalian species [15,16]. Large

animals undergo many more cell divisions than smaller

ones and, since they live longer, tumourigenesis is more

likely due to mutation accumulation. Large animals

evolved additional tumour suppressor mechanisms that

rely on counting cell divisions, of which telomere short-

ening is proposed to be one. There are, however, excep-

tions. For example, the naked mole rat is a small-sized

rodent that lives up to 30 years and has evolved robust

tumour suppressor mechanisms. Coincidently, these

animals have shorter telomeres than most of the closely

related rodents [17].

Most rodents and insectivores, such as hedgehogs, mice

and rats, have long telomeres. However, both short-tel-

omere and long-telomere species are found separately

within at least four mammalian orders (Carnivora, Chir-

optera, Rodentia, Lagomorpha) [16]. This suggests that

telomere length evolved multiple times in response to

different life strategies. The evolutionary history of tel-

omeres is still unravelling and, while there is evidence

suggesting short telomeres as a tumour suppressor mech-

anism, there is still no convincing explanation for selec-

tion of long telomeres in short-lived animals.

In humans it is still unclear how different tissues

respond to telomere shortening, but premature ageing

syndromes such as Werner, Hutchinson-Gilford and

Dyskeratosis Congenita (DC) exhibit shorter telo-

meres, accelerated ageing and reduced lifespan [18].

Accordingly, several studies in human populations

point to a negative correlation of telomere length with

age [19–21]. In addition, recent studies have identified

telomerase gene mutations in a variety of syndromes

with short telomeres, such as pulmonary fibrosis [22]

and aplastic anaemia [23]. Conversely, longer telomeres

have been positively linked with healthy life and long-

evity [19]. Individuals with longer telomeres have a

generally improved health profile and cognitive func-

tions relative to controls.

Teleost fish have emerged as promising vertebrate

models. Recent work shows that zebrafish have human

length telomeres [24]. Despite detection of telomerase

activity in various tissues, zebrafish telomeres shorten

with age [25]. This suggests that telomerase expression

in some somatic cells is not sufficient to prevent telomere

shortening, thus mimicking the human scenario [26].

Telomere shortening was further associated with

impaired regenerative responses in wild type aged zebra-

fish, suggesting a role for telomere maintenance in tissue

homeostasis [25]. Accordingly, our work shows that

telomerase deficient zebrafish degenerate and die

prematurely in the first generation, suggesting that, sim-

ilarly to humans, telomerase is required for zebrafish

lifespan (C. Henriques et al., submitted for publication).

Telomere shortening in the lab
Assessing the natural consequences of telomere short-

ening in the lab is a serious challenge. Since telomeres

shorten slowly with age, and these studies usually take too

long. Scientists frequently use short-lived animals, such

as lab mice, that either have long telomeres (5–10� longer

than humans) or mutants with artificially shortened tel-

omeres. A major drawback of this strategy is that, unlike

humans, most short-lived species have long telomeres and

telomerase-independent cell division counting mechan-

isms [8,9,11]. Murine primary cells lack replicative senes-

cence in vitro [16]. Instead, they arrest cell proliferation

by undergoing stress-induced senescence (or STASIS), a

phenomenon directed by either environmental stress or

aberrant signalling [8,16]. Furthermore, immortalization

occurs at a far higher frequency than human cells [9,27],

and is largely telomerase-independent, engaging instead

Alternative Lengthening of Telomeres (ALT) recombi-

nation-based mechanisms [9]. Accordingly, old lab mice

develop a wide range of telomerase-independent tumours

that differ substantially from ageing-associated cancers in

humans [9].

Most of our knowledge on how vertebrates respond to

short telomeres derives from studies using telomerase-

deficient mice [28]. Telomerase-deficient mice are viable

up to six generations showing no particular phenotypes

until later generations [29–31]. Consistent with the idea

that short telomeres do not take part of the mouse ageing

process, wild type mice grow old and age despite the

presence of very long telomeres [9]. The main mechan-

ism directing ageing in the mouse is not totally under-

stood. One possibility is that ageing in mice is primarily

dictated by exogenous and endogenous stress, such as

ROS [32��,33]. It is wrong, however, to assume that mice

that normally lack short telomeres will maintain evol-

utionary conserved mechanisms to deal with telomere

shortening. Thus, the use of current lab mouse strains to

model the role of telomeres in human cancer and ageing

must be crucially validated.

Recently, a wild-derived inbred mouse strain (Cast/EiJ)

that displays shorter, human-like telomeres has been

advanced as a more suitable model to study telomere

dysfunction [34�]. Telomerase deficiency in this strain

gives rise to first generation defects similar to the ones

observed human DC syndromes [34�]. Thus telomere

length may be limiting for Cast/EiJ longevity, making it a

promising alternative to the current mouse models. Our

recent work using zebrafish suggests this species also

evolved to depend on telomerase to regulate lifespan.

This vertebrate will offer an important counterweight to

our current knowledge.
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Tissue communication in response to
telomere shortening
How an organism responds to telomere shortening will

depend on the choice between senescence and apoptosis

in different tissues [35]. While stem cells are more sensi-

tive to apoptosis and resistant to senescence [36], somatic

cells tend to enter replicative senescence in culture [37].

Whether this is the case in vivo is still not clear, but

removing p16-positive senescent cells from a premature

ageing mouse model partially rescued tissue degeneration

[38��]. Some organs were preferentially rescued over

others, suggesting different contributions of senescence

in the whole body.

Tissues with high cell turnover are more sensitive to

telomere shortening than more quiescent tissues [30].

Telomere shortening can impact tissue homeostasis in

a cell-autonomous manner by impairing cell proliferation

and giving rise to genome instability, providing the ‘seed’

for disease development. Accordingly, short telomeres

significantly promote and enhance tumour progression in

vivo when telomerase is re-expressed at a time when cells

have already entered crisis and genome instability [14].

Telomere shortening may also contribute to the ‘soil’ in

which old age diseases set in. Short telomeres trigger cell

senescence and senescent cells accumulate in aged tis-

sues. These cells produce factors that affect not only the

local tissue but also the whole organism. Senescence-

associated secretory phenotype (SASP) is characterized

by the secretion of growth factors, tissue remodelling

enzymes and pro-inflammatory cytokines, capable of

influencing tumour development [39].

Telomere shortening can therefore affect whole body

homeostasis by both cell-autonomous and non-cell-

autonomous mechanisms (Figure 1). Understanding

which of these phenomena limits tissue homeostasis in

the old is crucial, particularly when considering possible

telomerase ‘therapies’. Crucially, systemic microenviron-

ment in late generation telomerase knockout mice irre-

versibly impairs haematopoietic stem cell homeostasis

[40��]. This suggests that short telomeres may cause a

global inhibitory growth response. Given this, whether

organ rejuvenation can be sustained within a surrounding

senescent environment remains to be clarified. This

knowledge will have profound implications, if we are

to design therapies that rely on the transplantation of

rejuvenated cells, such as iPS [41].

Discussion
Even though telomere biology has been the target of

intense study for the past twenty years, we still do not

understand the consequences of telomere shortening in

different tissues and how these affect whole organism in

naturally aged animals. Most studies have a modular

approach, studying a particular response in a particular

tissue, forgetting the need to integrate consequences of

telomere dysfunction in the whole body.

Ageing is a peculiar phenomenon in nature, in the sense

that it is actually rarely seen in most animals. Animals

806 Cell division, growth and death

Figure 1

Non cell-autonomous effects on tissue homeostasis4

5

1

2

3

Low-proliferative tissues

High-proliferative tissues

Telomere shortening

DNA damage response

Mitochondria dysfunction-->ROS

Senescence of somatic cells       Apoptosis of stem cells

Local consequences on tissue homeostasis

Current Opinion in Cell Biology

Tissue communication in response to telomere dysfunction: (1) Restriction of telomerase expression leads to telomere erosion throughout lifetime. (2)

Organs with high-proliferative capacity, such as gonads and gut, become rate-limiting over time and initiate DNA damage responses (DDRs). (3) DDRs

culminate in apoptosis of stem cells and senescence of somatic cells. Tissue homeostasis is locally perturbed both in a cell-autonomous and non-cell-

autonomous manner. (4) Non-cell-autonomous signals spread to produce a systemic effect that extends to low-proliferating organs, such as the brain

and muscle. (5) Systemic tissue damage leads to metabolic disorders that give rise to further ROS and cellular damage, thus creating a positive

feedback loop capable of impairing whole body homeostasis.
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reproduce and die mostly before ageing sets in. Repro-

ductive success is the most important driver of natural

selection. So, it is conceivable that specific organs, such as

the reproductive system, may play a rate-limiting role in

affecting whole body homeostasis. Revealing studies in

animal models as different as Caenorhabditis elegans [42]

and mice [43] show how the reproductive system directly

impacts on lifespan. Tissue communication is at the heart

of transmitting information between different organs, be

it in initiating (e.g. gonads), interpreting (e.g. brain) or

effecting the response (e.g. gut) [44].

In species, such as humans, that evolved to regulate cell

proliferation based on telomere length, high-turnover tis-

sues will be affected with age. Telomere shortening in these

tissues may be responsible for initiating whole body

responses in a non-cell-autonomous way (Figure 1). Iden-

tifying these rate-limiting tissues will provide targets on

which to direct telomerase therapies thus correcting defects

locally and possibly rescue whole body degeneration [45].

Future studies will offer an integrative view and test

whether cell-autonomous telomerase rejuvenation can

recover whole body degeneration. Understanding the

impact that individual tissues have in a systemic response

will allow us to evaluate the contribution of telomere

shortening to the ageing process as a whole.
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